Difference between revisions of "Compile-time vs. compile-time"
(→There's compile-time, and then there's compile-time) |
(attribution, copy edit) |
||
Line 1: | Line 1: | ||
+ | :''By H. S. Teoh, March 2017'' | ||
+ | |||
==Introduction== | ==Introduction== | ||
Line 16: | Line 18: | ||
* Compile-time function evaluation (CTFE). | * Compile-time function evaluation (CTFE). | ||
− | The compiler actually has more distinct phases of semantic analysis than these two, but for our purposes, | + | While these two take place at "compile-time", they represent distinct phases in the process of compilation, and understanding this distinction is the key to understanding how D's "compile-time" features work. |
+ | |||
+ | (The D compiler actually has more distinct phases of semantic analysis than these two, but for our purposes, we don't have to worry about these finer details.) | ||
===Template expansion / AST manipulation=== | ===Template expansion / AST manipulation=== | ||
One of the first things the compiler does when it compiles your code, is to transform the text of the code into what is commonly known as the Abstract Syntax Tree (AST). | One of the first things the compiler does when it compiles your code, is to transform the text of the code into what is commonly known as the Abstract Syntax Tree (AST). | ||
+ | |||
+ | For example, this program: | ||
+ | |||
+ | <syntaxhighlight lang=D> | ||
+ | import std.stdio; | ||
+ | void main(string[] args) | ||
+ | { | ||
+ | writeln("Hello, world!"); | ||
+ | } | ||
+ | </syntaxhighlight> |
Revision as of 20:19, 21 March 2017
- By H. S. Teoh, March 2017
Introduction
One of D's oft-touted features is its awesome compile-time capabilities, which open up wonderful meta-programming opportunities, code-generation techniques, compile-time introspection, DSLs that are transformed into code at compile-time and therefore incur zero runtime overhead, and plenty more. Acronyms like CTFE have become common parlance amongst D circles.
However, said "compile-time" capabilities are also often the source of much confusion and misunderstanding, especially on the part of newcomers to D, often taking the form of questions posted to the discussion forum by frustrated users such as: "Why doesn't the compiler let me do this?!", "Why doesn't this do what I think it should do?", "Why can't the compiler figure this simple thing out?! The compiler is so stupid!", and so on.
This article hopes to clear up most of these misunderstandings by explaining just what exactly D's "compile-time" capabilities are, give a brief overview of how it works, and thereby hopefully give newcomers to D a better handle on what exactly is possible, and what to do when you run into a snag.
There's compile-time, and then there's compile-time
Part of the confusion is no thanks to the overloaded term "compile-time". It sounds straightforward enough -- "compile-time" is simply the time when the compiler does whatever it does when it performs its black magic of transforming human-written D code into machine-readable executables. Therefore, if feature X is a "compile-time" feature, and feature Y is another "compile-time" feature, then X and Y ought to be usable in any combination, right? Since, after all, it all happens at "compile-time", so surely the compiler, with its access to black magic, should be able to just sort it all out, no problem.
The reality, of course, is a bit more involved than this. There are, roughly speaking, actually at least two distinct categories of D features that are commonly labelled "compile-time":
- Template expansion, or abstract syntax tree (AST) manipulation; and
- Compile-time function evaluation (CTFE).
While these two take place at "compile-time", they represent distinct phases in the process of compilation, and understanding this distinction is the key to understanding how D's "compile-time" features work.
(The D compiler actually has more distinct phases of semantic analysis than these two, but for our purposes, we don't have to worry about these finer details.)
Template expansion / AST manipulation
One of the first things the compiler does when it compiles your code, is to transform the text of the code into what is commonly known as the Abstract Syntax Tree (AST).
For example, this program:
import std.stdio;
void main(string[] args)
{
writeln("Hello, world!");
}