Build D for Android

From D Wiki
Revision as of 03:39, 16 August 2017 by Joakim (talk | contribs) (Extract build instructions into its own page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

These instructions show you how to build D command-line executables and OpenGL ES GUI apps for Android, by using the native and cross-compilers available here. There are separate steps for cross-compilation, ie building apps on a linux/x64 PC and running on Android/ARM, versus native compilation, building and running on your Android/ARM device itself.

Since you cannot install the Android SDK on Android, I end by showing how to package a GUI Android app, a zip file called an .apk, from scratch, by using the tools available in the Termux app for Android, a terminal emulator app and OSS package manager/repository for Android devices.



  • linux/x64 shell, where you'll run the ldc cross-compiler, called the linux host
    • You can use a virtual machine like VirtualBox/VMware on Windows or Mac, with your favorite linux distro installed.
    • Windows 10: You can alternately use Bash on Ubuntu on Windows (the Windows Subsystem for Linux).
  • Android native toolchain, the NDK and optionally the SDK
    • The SDK is necessary if you want to package a GUI app; the NDK is enough if you just want to build a command-line binary.
  • Android/ARM, whether a device or emulator, to run your D code
    • The SDK comes with an emulator. I use actual hardware, so that's what I'll discuss.
    • If using a device, you need some way to transfer the app over. There are several ways to do this, here are a few I've tried:
  1. Install an ssh server app on your device and scp the app over. Alternately, set up an ssh server on your linux host, and use an ssh/scp client on Android to get the app. This is what I do, by using the OpenSSH client in Termux.
  2. Host the app in a web server and get it by using your Android browser or a downloader app.
  3. Setup the Android Debug Bridge (adb) on your device and use the SDK tools to push your files over.

Native compilation


Once you've got a linux/x64 shell setup or the Termux app installed, get the ldc compiler for Android and the NDK for cross-compilation.


Make sure curl is available, or use the equivalent wget command. You will need tar to unpack ldc and unzip for the NDK. I show the command to install unzip for Ubuntu, use the right package manager for your distro.

sudo apt-get install unzip

curl -L -O
export NDK=/path/to/your/android-ndk-r15c

curl -L -O
tar xf ldc2-android-arm-1.3.1-beta2-linux-x86_64.tar.xz
export LDC=/path/to/your/ldc2-android-arm-1.3.1-beta2-linux-x86_64

Make sure the NDK and LDC variables are set to the full path where they are located.

Native compilation

You need the clang compiler and the linker it automatically installs, as ldc tries to use the local C compiler for linking.

apt install clang curl
curl -L -O
dpkg -i ldc_1.3.0_arm.deb

Build a command-line executable

Now that we have a D compiler for Android, let's try building a small program, the classic Sieve of Eratosthenes single-core benchmark, which finds all prime numbers up to a number you choose.


curl -L -O

$LDC/bin/ldc2 -c sieve.d

$NDK/toolchains/llvm/prebuilt/linux-x86_64/bin/clang -Wl,-z,nocopyreloc
--sysroot=$NDK/platforms/android-16/arch-arm -lgcc
-gcc-toolchain $NDK/toolchains/arm-linux-androideabi-4.9/prebuilt/linux-x86_64
-target armv7-none-linux-androideabi -no-canonical-prefixes -fuse-ld=bfd
-Wl,--fix-cortex-a8 -Wl,--no-undefined -Wl,-z,noexecstack -Wl,-z,relro
-Wl,-z,now -fPIE -pie -Wl,--export-dynamic -lc -lm sieve.o
$LDC/lib/libphobos2-ldc.a $LDC/lib/libdruntime-ldc.a -o sieve

Copy this sieve program onto an Android device or emulator. Here's how I do it in Termux, with an ssh server running on the linux host:

scp .

Native compilation

curl -L -O

ldc2 sieve.d

Run the sieve program

The sieve program will tell you how many prime numbers there are in the first n integers, a limit you can specify. Run this command to find how many primes there are in the first million integers:

./sieve 1000000

If you built sieve successfully, it should return

78498 primes

Build a sample OpenGL ES GUI app ported to D

Clone my android repository, which contains several headers and sample OpenGL apps from the NDK translated to D, and build the Native Activity app, which is written completely in D.


After cloning my Android repo, go to the sample app, compile the D source, then link the objects into a shared library and place it in the directory that the SDK expects:

sudo apt-get install git

git clone

cd android/samples/native-activity/

$LDC/bin/ldc2 -I../../ -c jni/main.d

$LDC/bin/ldc2 -I../../ -c ../../android/sensor.d

$LDC/bin/ldc2 -I../../ -c ../../android_native_app_glue.d

mkdir -p libs/armeabi-v7a/

$NDK/toolchains/llvm/prebuilt/linux-x86_64/bin/clang -Wl,-soname,
-shared --sysroot=$NDK/platforms/android-16/arch-arm main.o sensor.o
android_native_app_glue.o $LDC/lib/libphobos2-ldc.a $LDC/lib/libdruntime-ldc.a
-lgcc -gcc-toolchain $NDK/toolchains/arm-linux-androideabi-4.9/prebuilt/linux-x86_64
-no-canonical-prefixes -fuse-ld=bfd -target armv7-none-linux-androideabi
-Wl,--fix-cortex-a8 -Wl,--no-undefined -Wl,-z,noexecstack -Wl,-z,relro -Wl,-z,now
-llog -landroid -lEGL -lGLESv1_CM -lc -lm -o libs/armeabi-v7a/

Finally, package the app as the SDK directs. I document the older Ant approach, which is deprecated, replace it with the Gradle command from a newer SDK. With Ant, set the path to your SDK, then run these commands:

export SDK=/path/to/your/android-sdk-linux
$SDK/tools/android update project -p . -s --target 1
ant debug

Transfer the resulting bin/NativeActivity-debug.apk to your device.

cd /sdcard/Download/
scp .

Native compilation

apt install git

git clone

cd android/samples/native-activity/

ldc2 -I../../ -c jni/main.d

ldc2 -I../../ -c ../../android/sensor.d

ldc2 -I../../ -c ../../android_native_app_glue.d

mkdir -p libs/armeabi-v7a/

$PREFIX/bin/clang -Wl,-soname, -shared main.o sensor.o
android_native_app_glue.o $PREFIX/lib/libphobos2-ldc.a $PREFIX/lib/libdruntime-ldc.a 
-lgcc -no-canonical-prefixes -target armv7-none-linux-androideabi -Wl,--fix-cortex-a8
-Wl,--no-undefined -Wl,-z,noexecstack -Wl,-z,relro -Wl,-z,now -llog -landroid -lEGL
-lGLESv1_CM -lc -lm -o libs/armeabi-v7a/

Follow the instructions below to package this native shared library into an Android apk.

Install and run the sample GUI app

Go to Settings->Security and allow installation of apps from unknown sources, ie from outside the Play Store, then go to /sdcard/Download in your file manager and choose the Native Activity apk to install it. Open the app after installing or go to your app folder and run the app named NativeActivity: it'll show a black screen initially, then flash a bunch of colors when the screen is touched.

Package an Android app from scratch on your Android device

Will fill in this info next...