Difference between revisions of "DIP58"
Line 32: | Line 32: | ||
SliceExpression and ForeachRangeStatement are removed from the language. CaseRangeStatement remains unchanged. | SliceExpression and ForeachRangeStatement are removed from the language. CaseRangeStatement remains unchanged. | ||
− | Code in the form "Expression1 .. Expression2" is parsed as a ToExpression ( | + | Code in the form "Expression1 .. Expression2" is parsed as a ToExpression (<code>a..b</code> can be read "a to b"). ".." has the lowest operator precedence of any binary operator. |
=== Resolving ToExpression === | === Resolving ToExpression === |
Revision as of 06:06, 17 March 2014
Title: | ".." as a Binary Operator |
---|---|
DIP: | 58 |
Version: | 1 |
Status: | Draft |
Created: | 2014-03-16 |
Last Modified: | 2014-03-16 |
Author: | Mason McGill |
Contents
Abstract
Making ".." a binary operator allows multidimensional indexing, terse range construction, and other features especially useful for scientific and engineering applications, while reducing language complexity and preserving backwards compatibility.
Rationale
One of D's design goals is to "cater to the needs of numerical analysis programmers". To that end, D already has some syntax to support MATLAB/Python/Julia/R-style multidimensional array manipulation: IndexExpression, SliceExpression, and "$". However, the ability to tersely express numeric ranges arguably makes languages like Julia more usable for "vectorized" numerical programming than D. Making ".." a general-purpose binary operator would enable this functionality, and improve the usability of numerical APIs.
Proposal
Grammar
SliceExpression and ForeachRangeStatement are removed from the language. CaseRangeStatement remains unchanged.
Code in the form "Expression1 .. Expression2" is parsed as a ToExpression (a..b
can be read "a to b"). ".." has the lowest operator precedence of any binary operator.
Resolving ToExpression
A ToExpression is delegated to the arguments if they implement "opBinary" or "opBinaryLeft" for the ".." operator. Otherwise, it yields a structure that can be used in an IndexExpression or ForeachStatement to mimic a SliceExpression or ForeachRangeExpression.
auto __evaluateToExpression(Left, Right)(Left left, Right right)
{
static if (__traits(compiles, left.opBinary!".."(right)))
return left.opBinary!".."(right);
else static if (__traits(compiles, right.opBinaryRight!".."(left)))
return right.opBinaryRight!".."(left);
else
return BoundedRange!(Left, Right)(left, right);
}
struct BoundedRange(Front, Back)
{
Front front;
Back back;
static if (is(typeof(front >= back) : bool))
bool empty() { return front >= back; }
static if (__traits(compiles, front++))
void popFront() { front++; }
/* Other range operations, if supported. */
}
This behavior can be changed in a non-backwards-compatible release to make ".." behave analogously to other binary operators (refusing to compile if a matching "opBinary" or "opBinaryRight" isn't defined).
Changes to the resolution of IndexExpression
An IndexExpression that would previously have been parsed as a SliceExpression first attempt to delegate to "opSlice". Failing that, they delegate to "opIndex". Index-assignment, index-op-assignment, and index-unary operations are handled analogously. This is similar to the route Python took when changing its indexing/slicing semantics.
auto __evaluateIndexExpression(Base, Indices...)(Base base, Indices indices)
{
enum is0ArgSlice = !indices.length;
enum is2ArgSlice = is(indices[0] == BoundedRange!(F, B), F, B);
static if (is2ArgSlice)
auto front = indices[0].front, back = indices[0].back;
static if (is0ArgSlice && __traits(compiles, base.opSlice())
return base.opSlice();
else static if (is2ArgSlice && __traits(compiles, base.opSlice(front, back))
return base.opSlice(front, back);
else
return base.opIndex(indices);
}
These changes can be reverted in a non-backwards-compatible release to drop support for the "opSlice*" family of functions.
Usage
Multidimensonal Slicing
const submatrix = matrix[0..5, 1..3];
matrix[0..5, 1..3] *= 2;
Strided Slicing/Iteration
const oddEntries = vector[(0..10).by(2)]; // Either spelling could be
const evenEntries = vector[1..2..11]; // supported by a library.
writeln(array(0..2..10)); // Prints [0, 2, 4, 6, 8].
Terse Constant Declaration
enum size = [150.cm .. 200.cm, 25.cm .. 50.cm];
enum orientation = -30.deg .. 30.deg;
detectPedestrians(size, orientation);
Defining Multidimensional Grids
const inputSpace = meshgrid(0..100, 0..100);
plot(inputSpace, someFunction(inputSpace));
Simulating Physics
const line = Point(1, 2, 3)..Point(3, 2, 1);
const bounds = Box(1..3, 2..4, 3..6);
const collision = bounds.contains(line);
Parsing Text
const letters = 'a'..'z';
const numbers = '0'..'9';
find(letters ~ numbers, userInput);
Handling Dates/Times
const vacation = july(10, 2014)..july(15, 2014);
foreach (day; monday..friday)
work(day);
Copyright
This document has been placed in the Public Domain.