Difference between revisions of "DIP25"

From D Wiki
Jump to: navigation, search
(Typechecking rules)
(Description)
Line 64: Line 64:
  
 
struct S {
 
struct S {
     private int x;
+
     int x;
 
     ref int get() { return x; }
 
     ref int get() { return x; }
 
}
 
}
Line 73: Line 73:
  
 
ref int iun() {
 
ref int iun() {
 +
  S s;
 +
  return s.x; // see https://issues.dlang.org/show_bug.cgi?id=13902
 +
}
 +
 +
ref int jun() {
 
   S s;
 
   S s;
 
   return s.get; // escape the address of part of a local
 
   return s.get; // escape the address of part of a local
 
}
 
}
  
ref int jun() {
+
ref int kun() {
 
   return S().get; // worst contender: escape the address of a part of an rvalue
 
   return S().get; // worst contender: escape the address of a part of an rvalue
 
}
 
}
Line 88: Line 93:
 
=== Enhancing <tt>inout</tt> ===
 
=== Enhancing <tt>inout</tt> ===
  
The main issue is typechecking functions that return a <tt>ref T</tt>. Those that attempt to return locals  
+
The main issue is typechecking functions that return a <tt>ref T</tt>. Those that attempt to return locals or parts thereof are already addressed directly, contingent to [https://issues.dlang.org/show_bug.cgi?id=13902 Issue 13902]. The one case remaining is allowing a function returning <code>ref T</code> to return a parameter of type <code>ref T</code>, or a part of such a parameter.
 
 
The rules below discuss under what circumstances functions receiving and/or returning <code>ref T</code> may be called, where <code>T</code> is some arbitrary type. Let us also denote with <code>S<sub>T</sub></code> any <code>struct</code> that has a non-static member variable of type <code>T</code>.
 
 
 
# An invocation of a function that takes a parameter of type <code>ref T</code> may pass one of the following:
 
## An lvalue of type <code>T</code>, including function arguments, array and <code>struct</code> members;
 
## An incoming <code>ref T</code> parameter or a member of type <code>T</code> of <code>S<sub>T</sub></code> received as <code>ref S<sub>T</sub></code>
 
## The result of a function returning <code>ref T</code>, or a member of <code>S<sub>T</sub></code> returned as <code>ref S<sub>T</sub></code>.
 
# A function that returns a <code>ref T</code> may return one of the following:
 
##  A static lvalue of type <code>T</code>, including members of static <code>struct</code> values;
 
## A member variable of type <code>T</code> belonging to a <code>class</code> object;
 
## A <code>ref T</code> parameter;
 
## A member of type <code>T</code> of <code>S<sub>T</sub></code> that has been passed as <code>ref S<sub>T</sub></code> into the function;
 
## The invocation of a function <code>fun</code> returning <code>ref T</code> IF <code>fun</code> does NOT take any parameters of type <code>T</code> or <code>S<sub>T</sub></code>.
 
## The invocation of a function <code>fun</code> returning <code>ref T</code> IF none of <code>fun</code>'s parameters of type <code>ref T</code> and <code>ref S</code> are bound to local variables.
 
 
 
=== Discussion and Examples ===
 
  
The rules allow unrestricted pass-down and conservatively restrict pass-up to avoid escaping values. Itemized discussion follows.
+
The key is to distinguish legal from illegal cases. One simple but overly conservative option would be to simply disallow returning a <code>ref</code> parameter or part thereof. That makes <code>identity</code> impossible to implement, and as a consequence accessing elements of a container by reference becomes difficult or impossible to typecheck properly. Also, heap-allocated structures with deterministic destruction (e.g. reference counted) must insert member copies for all accesses.  
  
1.1 Regular lvalues can be passed down:
+
Cases that should work include:
  
 
<syntaxhighlight lang=D>
 
<syntaxhighlight lang=D>
void fun(ref T);
+
@safe ref int identity(ref int x) {  
 
+
     return x; // should work
struct S { int a; T b; }
 
 
 
void caller(T v1, S v2) {
 
     static T v3;
 
    T v4;
 
    static S v5;
 
    S v6;
 
 
 
    // Fine: pass argument
 
    fun(v1);
 
    // Fine: pass member of argument
 
    fun(v2.b);
 
    // Fine: pass static lvalue
 
    fun(v3);
 
    // Fine: pass of stack variable
 
    fun(v4);
 
    // Fine: pass member of static struct
 
    fun(v5.b);
 
    // Fine: pass member of local struct
 
    fun(v6.b);
 
 
}
 
}
</syntaxhighlight>
 
  
1.2. This rule allows forwarding references transitively.
+
@safe ref int fun(ref int input) {
 
+
     static int[42] data;
<syntaxhighlight lang=D>
+
     return data[input]; // should work
void fun(ref T);
 
 
 
struct S { int a; T b; }
 
 
 
void caller(ref T v1, ref S v2) {
 
     // Fine: pass ref argument
 
     fun(v1);
 
    // Fine: pass member of ref argument
 
    fun(v2.b);
 
 
}
 
}
</syntaxhighlight>
 
  
1.3. This rule enables passing down references obtained from other function calls.
+
@safe struct S {
 
+
    private int x;
<syntaxhighlight lang=D>
+
    ref int get() { return x; } // should work
void fun(ref T);
 
ref T gun();
 
struct S { int a; T b; }
 
ref S hun();
 
 
 
void caller() {
 
    // Fine: pass ref result
 
    fun(gun());
 
    // Fine: pass member of ref result
 
    fun(hun().b);
 
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
  
2.1. Static lvalues can be returned:
+
This proposal promotes enhancing the charter of the <code>inout</code> qualifier to propagate the lifetime of a parameter to the return value of a function. With the proposed semantics, a function is disallowed to return a <code>ref</code> parameter of a part thereof UNLESS the parameter is also annotated with <code>inout</code>. Under the proposed semantics <code>identity</code> will be spelled as follows:
  
 
<syntaxhighlight lang=D>
 
<syntaxhighlight lang=D>
struct S { int a; T b; }
+
@safe ref int wrongIdentity(ref int x) {  
static T v1;
+
     return x; // ERROR! Cannot return a ref, please use "ref inout"
static S v2;
 
 
 
ref T caller(bool condition) {
 
     static T v3;
 
    static S v4;
 
    // Fine
 
    if (condition) return fun(v1);
 
    if (condition) return fun(v2);
 
    if (condition) return fun(v3);
 
    if (condition) return fun(v4);
 
 
}
 
}
</syntaxhighlight>
+
@safe ref int identity(ref inout int x) {  
 
+
     return x; // fine
2.2.Member variables of classes can be returned because they live on the garbage-collected heap:
 
 
 
<syntaxhighlight lang=D>
 
class C { int a; T b; }
 
 
 
ref T caller() {
 
    auto c = new C;
 
    return c.b;
 
}
 
</syntaxhighlight>
 
 
 
2.3. This rule allows returning back an incoming parameter, which in turn allows implementing the <code>identity</code> function and idioms derived from it.
 
 
 
<syntaxhighlight lang=D>
 
ref T fun(ref T v1) {
 
    return v1;
 
}
 
</syntaxhighlight>
 
 
 
2.4. As above, but for members of <code>structs</code>.
 
 
 
<syntaxhighlight lang=D>
 
struct S { int a; T b; }
 
ref T fun(ref S v1) {
 
     return v1.b;
 
}
 
</syntaxhighlight>
 
 
 
2.5. This allows to pass up the result of a function that has no chance at all to return a reference to a local.
 
 
 
<syntaxhighlight lang=D>
 
// Assume T is not double or string
 
ref T fun(double, ref string);
 
struct S { int a; T b; }
 
ref S gun(double, ref string);
 
 
 
ref T caller(bool condition, ref T v1) {
 
    string s = "asd";
 
    if (condition) return fun(1, s);
 
    return gun(1, s).b;
 
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
  
2.6. This is the most sophisticated rule. It allows passing up the result of a function while disallowing those cases in which the function may actually return a reference to a local.
+
Just by seeing the signature <code>ref int identity(ref inout int x)</code> the compiler assumes that the result of identity must have a shorter lifetime than <code>x</code> and typechecks callers accordingly. Example (given the previous definition of <code>identity</code>:
  
 
<syntaxhighlight lang=D>
 
<syntaxhighlight lang=D>
ref T fun(T);
+
@safe ref int fun(ref inout int x) {  
ref T gun(ref T);
+
     int a;
struct S { int a; T b; }
+
     return a; // ERROR per current language rules
ref S hun(S);
+
     static int b;
ref S iun(ref S);
+
     return b; // fine per current language rules
 
+
     return identity(a); // ERROR, this may escape the address of a local
ref T caller(bool condition, ref T v1, ref S v2, T v3, S v4) {
+
     return x; // fine, propagate x's lifetime to output
     T v5;
+
     return identity(x); // fine, propagate x's lifetime through identity to the output
     S v6;
+
     return identity(identity(x)); // fine, propagate x's lifetime twice through identity to the output
 
 
    // Fine, no ref parameters
 
     if (condition) return fun(v1);
 
    if (condition) return fun(v2.b);
 
     if (condition) return fun(v3);
 
    if (condition) return fun(v4.b);
 
     if (condition) return fun(v5);
 
    if (condition) return fun(v6.b);
 
 
 
    // Fine, bound to ref parameters
 
     if (condition) return gun(v1);
 
    if (condition) return gun(v2.b);
 
 
 
    // Not fine, bound to locals
 
     // if (condition) return gun(v3);
 
    // if (condition) return gun(v4.b);
 
    // if (condition) return gun(v5);
 
    // if (condition) return gun(v6.b);
 
 
 
    // Fine, no ref at all
 
     if (condition) return hun(v2).b;
 
    if (condition) return hun(v4).b;
 
    if (condition) return hun(v6).b;
 
 
 
    // Fine, ref bound to ref argument
 
    if (condition) return iun(v2).b;
 
 
 
    // Not fine, bound to locals
 
    // if (condition) return iun(v4);
 
    // if (condition) return iun(v6);
 
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
 
=== Member functions ===
 
 
The rules above apply to member functions as well, considering that the <code>this</code> special parameter in a method belonging to type <code>A</code> is passed as a <code>ref A</code> parameter. This may cause problems with rvalue structs. (Currently, D allows calling a method against a struct rvalue.) Special rules concerning struct rvalues may be necessary.
 
  
 
== Taking address ==
 
== Taking address ==

Revision as of 00:06, 28 December 2014

DIP25: Sealed references

Title: Sealed references
DIP: 25
Version: 1
Status: Draft
Created: 2013-02-05
Last Modified: 2013-02-05
Author: Walter Bright and Andrei Alexandrescu
Links:

Abstract

D offers a number of features aimed at systems-level coding, such as unrestricted pointers, casting between integers and pointers, and the @system attribute. These means, combined with the other features of D, make it a complete and expressive language for systems-level tasks. On the other hand, economy of means should be exercised in defining such powerful but dangerous features. Most other features should offer good safety guarantees with little or no loss in efficiency or expressiveness. This proposal makes ref provide such a guarantee: with the proposed rules, it is impossible in safe code to have ref refer to a destroyed object. The restrictions introduced are not entirely backward compatible, but disallow code that is stylistically questionable and that can be easily replaced either with equivalent and clearer code.

In a nutshell

Description

Currently, D has some provisions for avoiding dangling references:

ref int fun(int x) {
  return x; // Error: escaping reference to local variable x 
}

ref int gun() {
  int x;
  return x; // Error: escaping reference to local variable x 
}

However, this enforcement is shallow. The following code compiles and allows reads and writes through defunct stack locations, bypassing scoping and lifetime rules:

ref int identity(ref int x) {
  return x; // pass-through function that does nothing 
}

ref int fun(int x) {
  return identity(x); // escape the address of a parameter 
}

ref int gun() {
  int x;
  return identity(x); // escape the address of a local
}

struct S {
    int x;
    ref int get() { return x; }
}

ref int hun(S x) {
  return x.get; // escape the address of a part of a parameter 
}

ref int iun() {
  S s;
  return s.x; // see https://issues.dlang.org/show_bug.cgi?id=13902
}

ref int jun() {
  S s;
  return s.get; // escape the address of part of a local
}

ref int kun() {
  return S().get; // worst contender: escape the address of a part of an rvalue
}

The escape patterns are obvious in these simple examples that make all code available and use no recursion, and may be found automatically. The problem is that generally the compiler cannot see the body of identity or S.get(). We need to devise a method that derives enough information for safety analysis only given the function signatures, not their bodies.

This DIP devises rules that allow passing objects by reference down into functions, and return references up from functions, whilst disallowing cases such as the above when a reference passed up ends up referring to a deallocated temporary.

Enhancing inout

The main issue is typechecking functions that return a ref T. Those that attempt to return locals or parts thereof are already addressed directly, contingent to Issue 13902. The one case remaining is allowing a function returning ref T to return a parameter of type ref T, or a part of such a parameter.

The key is to distinguish legal from illegal cases. One simple but overly conservative option would be to simply disallow returning a ref parameter or part thereof. That makes identity impossible to implement, and as a consequence accessing elements of a container by reference becomes difficult or impossible to typecheck properly. Also, heap-allocated structures with deterministic destruction (e.g. reference counted) must insert member copies for all accesses.

Cases that should work include:

@safe ref int identity(ref int x) { 
    return x; // should work
}

@safe ref int fun(ref int input) {
    static int[42] data;
    return data[input]; // should work
}

@safe struct S {
    private int x;
    ref int get() { return x; } // should work 
}

This proposal promotes enhancing the charter of the inout qualifier to propagate the lifetime of a parameter to the return value of a function. With the proposed semantics, a function is disallowed to return a ref parameter of a part thereof UNLESS the parameter is also annotated with inout. Under the proposed semantics identity will be spelled as follows:

@safe ref int wrongIdentity(ref int x) { 
    return x; // ERROR! Cannot return a ref, please use "ref inout"
}
@safe ref int identity(ref inout int x) { 
    return x; // fine
}

Just by seeing the signature ref int identity(ref inout int x) the compiler assumes that the result of identity must have a shorter lifetime than x and typechecks callers accordingly. Example (given the previous definition of identity:

@safe ref int fun(ref inout int x) { 
    int a;
    return a; // ERROR per current language rules
    static int b;
    return b; // fine per current language rules
    return identity(a); // ERROR, this may escape the address of a local
    return x; // fine, propagate x's lifetime to output
    return identity(x); // fine, propagate x's lifetime through identity to the output
    return identity(identity(x)); // fine, propagate x's lifetime twice through identity to the output
}

Taking address

This proposal introduces a related restriction: taking the address of the following entities shall be disallowed, even in @system.

  • Parameters (either value or ref)
  • Stack-allocated locals.
  • Member variables of a struct if the struct is a parameter (either value or ref) or stack-allocated.
    • Note that using a pointer to a struct does allow taking the address of a member.
    • Also note that a struct that is part of a class object also allows address taking.
  • The result of functions that return ref.

This is because escaping pointers away from expressions is too dangerous and should be more explicit. The capability must still be present, otherwise very simple uses are not possible anymore. Consider:

bool parse1(ref double v) {
    // Use C's scanf
    return scanf("%f", &v) == 1; // Error: cannot take the address of v
}

double parse2() {
    // Use C's scanf, 2nd try
    double v;
    enforce(scanf("%f", &v) == 1); // Error: cannot take the address of v
    return v;
}

double parse3() {
    // Use C's scanf, 3rd try
    auto pv = new double;
    enforce(scanf("%f", pv) == 1); // Fine
    return *pv;
}

That would force many variables to exist on the heap even though it's easy to figure that the code is safe since the semantics of scanf is understood by the programmer. To address this issue, this proposal fosters introducing a standard function with the signature:

@system T* addressOf(ref T value);

The function returns the address of value and can only be used in @system or @trusted code. addressOf itself cannot use the & address-of operator because it's forbidden even in @system code. But there are many possible implementations, including escaping into C or assembler. One possible portable implementation is:

@system T* addressOf(ref T value) {
    static T* id(T* p) { return p; }
    auto pfun = cast(T* function(ref T)) id;
    return *pfun(value);
}

This relies on the fact that at binary level a ref parameter is passed as a pointer.

With this function available as part of the standard library, efficient code can be written that forwards to scanf without the compiler knowing its semantics:

@trusted bool parse1(ref double v) {
    // Use C's scanf
    return scanf("%f", addressOf(v)) == 1; // Fine
}

@trusted double parse2() {
    // Use C's scanf, 2nd try
    double v;
    enforce(scanf("%f", addressOf(v)) == 1); // Fine
    return v;
}

Note: Isn't replacing & with addressOf just shuffling? How does it mark an improvement?

Forbidding use of & against specific objects has two positive effects. First, it eliminates by design some thorny syntactic ambiguities discussed in DIP23. In the expression &fun or &expression.method, the & may apply to either the function/method itself or to the value returned by the function/method (which doesn't compile if the result is an rvalue, but does and is unsafe if the result is a ref). Forbidding the unsafe case leaves only one meaning for & in this context: take the address of the function or delegate. To get the address of the result, one would write addressof(fun) or addressof(expr.method), which has unsurprising syntax and semantics.

The second beneficial effect is that addressOf is annotated appropriately with @system and as such integrates naturally with the rest of the type system without a need to ascribe special rules and exceptions to &.

Copyright

This document has been placed in the Public Domain.