Difference between revisions of "DIP23"
(→In a nutshell) |
|||
(One intermediate revision by one other user not shown) | |||
Line 489: | Line 489: | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | |||
+ | ==Additional restrictions== | ||
+ | |||
+ | We want to get the design right so we're starting conservatively until there's good evidence we should relax the rules. Therefore: | ||
+ | |||
+ | * No overloading of properties with any other functions. | ||
+ | * Inheritance can't add a property when the other exists in the base class | ||
+ | * No rvalues as the first parameter type in setters (two-parameter properties). Assignments should only work on <code>ref</code>. | ||
== Copyright == | == Copyright == | ||
This document has been placed in the Public Domain. | This document has been placed in the Public Domain. | ||
+ | [[Category: DIP]] |
Latest revision as of 18:56, 28 May 2014
Contents
DIP23: Fixing properties redux
Title: | Fixing properties |
---|---|
DIP: | 23 |
Version: | 1 |
Status: | Draft |
Created: | 2013-02-02 |
Last Modified: | 2013-02-02 |
Author: | Andrei Alexandrescu and Walter Bright |
Links: |
Abstract
There has been significant debate about finalizing property implementation. This document attempts to provide a proposal of reasonable complexity along with checkable examples.
Forces:
- Break as little code as possible
- Avoid departing from the existing and intended syntax and semantics of properties
- Make economy of means (little or no new syntax to learn)
- Avoid embarrassing situations such as expressions with unexpressible types or no-op address-of operator (as is the case with C functions).
In a nutshell
There are a few simple rules that govern the behavior of D properties as per this proposal. All details are consequences of these simple rules.
- Once a function has the
@property
attribute, it can NEVER be invoked using parens "()". NEVER. It simply does not understand parens. Parens are a right that@property
forfeited. Therefore, any paren ever present after the use of a@property
-adorned symbol will apply, if at all, to the value returned by that@property
. - A
@property
may have EXACTLY ONE or EXACTLY TWO parameters, counting the implicitthis
parameter if at all. The ONE-parameter version is ALWAYS a getter, and the TWO-parameter version is ALWAYS a setter. There's no variadics, defaulted parameters, and such. - ANY D expression
expr
has the same meaning (and type) whentypeof
is applied to it, and when not. That means the type ofexpr
when occurring in code is reallytypeof(expr)
. (No kidding.)
Description
The -property
switch gets deprecated
This DIP obviates any behavioral change via -property
.
Optional parens stay in
One can't discuss properties without also discussing optional parens. These obviate to some extent the need for properties (at least of the read-only kind) and make for potential ambiguities.
This proposal sustains that optional parentheses should stay in. That means, if a function or method may be called without arguments, the trailing parens may be omitted.
unittest
{
int a;
void fun1() { ++a; }
// will call fun
fun1;
assert(a == 1);
// Works with default arguments, too
void fun2(string s = "abc") { ++a; }
fun2;
assert(a == 2);
}
The same goes about methods:
unittest
{
int a;
struct S1 { void fun1() { ++a; } }
S1 s1;
// will call fun
s1.fun1;
assert(a == 1);
// Works with default arguments, too
struct S2 { void fun2(string s = "abc") { ++a; } }
S2 s2;
s2.fun2;
assert(a == 2);
}
However, that's not the case with function objects, delegate objects, or objects that implement the function call operator.
unittest
{
static int a;
static void fun1() { ++a; }
auto p1 = &fun1;
// Error: var has no effect in expression (p1)
p1;
assert(a == 0);
}
unittest
{
int a;
void fun1() { ++a; }
auto p1 = &fun1;
// Error: var has no effect in expression (p1)
p1;
}
unittest
{
static int a;
struct S1 { void opCall() { ++a; } }
S1 s1;
// Error: var has no effect in expression (s1) s1;
s1;
}
Taking the type of a symbol that may be used in a paren-less call results in the type of the returned object. THIS IS A CHANGE OF SEMANTICS.
unittest
{
int fun1() { return 42; }
static assert(is(typeof(fun1) == int));
}
To get the function type, one must apply the address-of operator.
unittest
{
int fun1() { return 42; }
static assert(is(typeof(&fun1) == int delegate()));
static int fun2() { return 42; }
static assert(is(typeof(&fun2) == int function()));
}
The same goes about member functions. THIS IS A CHANGE OF BEHAVIOR.
unittest
{
struct S1 { int fun() { return 42; } }
S1 s1;
assert(s1.fun == 42);
static assert(is(typeof(s1.fun) == int)); // currently fails
}
The basic motivation here is that "s1.fun" should not change type when under "typeof".
If a function returns a reference, then assignment through the paren-less call should work:
unittest
{
static int x;
ref int fun1() { return x; }
fun1 = 42;
assert(x == 42);
}
A function that returns an object that in turn supports a call with "()" will never automatically apply implicit parens to the returned object. Using either `fun` or `fun()` will return the callable entity. To invoke the callable entity immediately one must use `fun()()`.
unittest
{
static int x;
int function() fun1() { return () => 42; }
assert(is(typeof(fun1) == int function()));
assert(is(typeof(fun1()) == int function()));
assert(is(typeof(fun1()()) == int));
assert(fun1()() == 42);
}
"Read" properties with the @property annotation
Functions annotated with @property are subject to additional restrictions compared to regular functions.
In brief, the "()" operator may NEVER be applied EXPLICITLY to a function annotated with @property. THIS IS A CHANGE OF SEMANTICS.
unittest
{
@property int prop1() { return 42; }
assert(prop1 == 42);
static assert(is(typeof(prop1) == int));
static assert(!__traits(compiles, prop1()));
}
Applying the "()" to a property will simply apply it to the result of the property. THIS IS A CHANGE OF BEHAVIOR.
unittest
{
@property int function() prop1() { return () => 42; }
assert(prop1() == 42);
}
(Note: The @property annotation is not part of the function type, so it is impossible for a property to return a property.)
"Write" properties via the @property annotation
In order to use the assignment operator "=" property-style, the @property annotation MUST be used.
The rule for allowing assignment with properties is simple.
1. If "foo" is a function that has the @property annotation AND takes exactly one parameter, then "foo = x" calls foo with argument x. Calling "foo(x)" is disallowed. The type of the expression "foo = x" is the type of foo's result.
unittest
{
@property void fun(int x) { assert(x == 42); }
fun = 42;
assert(is(typeof(fun = 42) == void));
}
2. If "foo" is a function that has the @property annotation AND takes exactly two parameters, then "x.foo = y" calls foo with arguments x and y. Calling "foo(x, y)" or "x.foo(y)" is disallowed.
unittest
{
@property double fun(int x, double y) { assert(x == 42 && y == 43); return y; }
42.fun = 43;
assert(is(typeof(42.fun = 43) == double));
}
3. If "foo" is a member function of a class or struct that has the @property annotation AND takes exactly one parameter (aside from the implicit parameter this), then "x.foo = y" calls x.foo with argument y.
unittest
{
struct S1
{
@property double fun(int x) { assert(x == 42); return 43; }
}
S1 s1;
s1.fun = 42;
assert((s1.fun = 42) == 43);
assert(is(typeof(s1.fun = 42) == double));
}
No module-level properties
There is no module-level property emulating a global variable. That means a @property
defined at module level must take either one parameter (meaning it's a getter) or two parameters (meaning it's a setter).
// at module level
@property int truncated(double x) { return cast(int) x; }
@property void all(double[] x, int y) { x[] = cast(double) y; }
unittest
{
// truncated = 4.2; // compile-time error
int a = 4.2.truncated;
assert(a == 4);
auto d = [ 1.2, 3.4 ];
d.all = 42;
assert(d == [ 42.0, 42.0 ]);
}
Taking the address of a property
If prop
is a property, &prop or a.prop obey the normal rules of function/delegate access. They do not take the addres of the returned value implicitly. To do so, one must use &(prop) or &(a.prop).
Applying operators
This may be getting a bit too cute, but there's quite some demand for it.
If a.prop
is a member variable, the expression a.prop op= x
has the usual meaning. Otherwise, a.prop op= x
gets rewritten twice. First rewrite is (a.prop) op= x
, i.e. apply op=
to the result of the property. Second rewrite is a.prop = a.prop op x
. If only one of the two rewrite compiles, use it. If both compile, fail with ambiguity error.
For properties, the increment operators are rewritten as follows
Rewrite 1:
++a.p
----> ++(a.p)
a.p++
----> (++a.p)
Rewrite 2:
++a.p
----> { auto v = a.p; ++v; a.p = v; return v; }()
a.p++
----> { auto v = a.p; ++a.p; return v; }()
If only one of the two rewrite compiles, use it. If both compile, fail with ambiguity error.
unittest
A battery of detailed and explained unittests (derived from Kenji Hara's post follows.
// Could be any type
alias Type = int;
unittest
{
struct S
{
@property Type foo(); // formal getter
@property void bar(Type); // formal setter
@property ref Type baz(); // ref return getter == auxiliary setter
}
S s;
// Correct, normal property read
static assert( __traits(compiles, { s.foo; }));
// Cannot apply "()" explicitly to a property
static assert(!__traits(compiles, { s.foo(); }));
// s.foo automatically applies the property
static assert(is(typeof(s.foo) == Type));
// Taking the address reveals the delegate
static assert(is(typeof(&s.foo) == Type delegate()));
// Correct, normal property write
static assert( __traits(compiles, { s.bar = 1; }));
// Cannot write properties with the function call syntax
static assert(!__traits(compiles, { s.bar(1); }));
// A write-only property does not make sense without the assignment
static assert(is(typeof(s.bar)) == false);
// Taking the address reveals the delegate
static assert(is(typeof(&s.bar) == void delegate(Type)));
// Correct, normal property read
static assert( __traits(compiles, { s.baz; }));
// Cannot use "()" with properties
static assert(!__traits(compiles, { s.baz(); }));
// The property is read, writing is done through the resulting ref
static assert( __traits(compiles, { s.baz = 1; }));
// Automatically apply "()"
static assert(is(typeof(s.baz) == Type));
// Taking the address reveals the delegate
static assert(is(typeof(&s.foo) == ref Type delegate()));
// Changing precedence with parens reveals the returned type
static assert(is(typeof(&(s.foo)) == Type*));
}
unittest
{
struct S
{
Type foo(); // 0-arg function
void bar(Type n); // 1-arg function
ref Type baz(); // 0-arg ref return function
}
S s;
// Normal paren-less call
static assert( __traits(compiles, { s.foo; }));
// Normal paren-ful call
static assert( __traits(compiles, { s.foo(); }));
// Paren-less call inside typeof
static assert(is(typeof(s.foo) == Type));
// Taking address of method
static assert(is(typeof(&s.foo) == Type delegate()));
// Lowering assignment syntax only works with @property
static assert(!__traits(compiles, { s.bar = 1; }));
// Normal call
static assert( __traits(compiles, { s.bar(1); }));
// object.method cannot be typed, either use "&" to take address or "()" to call
static assert(is(typeof(s.bar)) == false);
// Taking the address gets the delegate
static assert(is(typeof(&s.bar) == void delegate(Type)));
// Normal paren-less call
static assert( __traits(compiles, { s.baz; }));
// Normal paren-less call followed by assignment
static assert( __traits(compiles, { s.baz = 1; }));
// Normal paren-ful call
static assert( __traits(compiles, { s.baz(); }));
// Paren-less call under typeof
static assert(is(typeof(s.baz) == Type));
// Paren-ful call under typeof
static assert(is(typeof(s.baz()) == Type));
// Getting address of delegate
static assert(is(typeof(&s.baz) == ref Type delegate()));
// Getting address of return
static assert(is(typeof(&(s.baz)) == Type*));
}
// Error, cannot define top-level getter
// @property Type foo();
// Fine, ALWAYS a getter for Type
@property void bar(Type);
// Error, cannot define top-level getter
// @property ref Type baz();
unittest
{
// bar is a getter, not a setter
static assert(!__traits(compiles, { bar = 1; }));
// Fine, UFCS property use
static assert(__traits(compiles, { 42.bar; }));
// Can't apply parens to @property
static assert(!__traits(compiles, { bar(1); }));
// Setter name by itself does not have a type
static assert(is(typeof(bar)) == false);
// Taking the address
static assert(is(typeof(&bar) == Type function()));
}
// Fine, ALWAYS a getter for Type
@property Type foh(Type);
// Fine, setter for Type
@property void bah(Type n, Type m);
// Fine, ALWAYS a getter for Type
@property ref Type bas(Type);
// Regular functions
Type hoo(Type);
void var(Type, Type);
ref Type vaz(Type);
unittest
{
// foh is a getter, not a setter
static assert(!__traits(compiles, { foh = 1; }));
// hoo is not a property
static assert(!__traits(compiles, { hoo = 1; }));
// Cannot apply parens to property
static assert(!__traits(compiles, { foh(1); }));
// Regular function call
static assert(__traits(compiles, { hoo(1); }));
// Fine, foh is a getter
static assert(__traits(compiles, { 1.foh; }));
// Fine, UFCS+paren-less call
static assert(__traits(compiles, { 1.hoo; }));
// Cannot use () with property
static assert(!__traits(compiles, { 1.foh(); }));
// UFCS call with parens
static assert(__traits(compiles, { 1.hoo(); }));
// Cannot use properties with ()
static assert(!__traits(compiles, { bah(1, 2); }));
// Normal function call
static assert(__traits(compiles, { var(1, 2); }));
// Yes, bah is a setter
static assert( __traits(compiles, { 1.bah = 2; }));
// No lowering for regular functions
static assert(__traits(compiles, { 1.var = 2; }));
// No parens with @property
static assert(!__traits(compiles, { 1.bah(2); }));
// UFCS call
static assert(__traits(compiles, { 1.var(2); }));
// bas is a getter, not a setter
static assert(!__traits(compiles, { bas = 1; }));
// vaz is a function with one argument
static assert(!__traits(compiles, { vaz = 1; })));
// No parens with property
static assert(!__traits(compiles, { bas(1); }));
// Regular function call
static assert(__traits(compiles, { vaz(1); })));
// Cannot use () with property
static assert(!__traits(compiles, { bas(1) = 2; }));
// Fine, call vaz and assign through the result
static assert(__traits(compiles, { vaz(1) = 2; }));
// Fine, bas is a getter
static assert(__traits(compiles, { 1.bas; }));
// Fine, UFCS
static assert(__traits(compiles, { 1.vaz; }));
// Fine, read property and assign result
static assert(!__traits(compiles, { 1.bas = 2; }));
// Fine, call function UFCS+parenless and assign result
static assert(__traits(compiles, { 1.vaz = 2; }));
// Cannot use () with property
static assert(!__traits(compiles, { 1.bas(); }));
// UFCS call
static assert(__traits(compiles, { 1.vaz(); })));
// Cannot use parens with property
static assert(!__traits(compiles, { 1.bas() = 2; }));
// Fine, UFCS call and assign result
static assert(__traits(compiles, { 1.vaz() = 2; }));
}
Additional restrictions
We want to get the design right so we're starting conservatively until there's good evidence we should relax the rules. Therefore:
- No overloading of properties with any other functions.
- Inheritance can't add a property when the other exists in the base class
- No rvalues as the first parameter type in setters (two-parameter properties). Assignments should only work on
ref
.
Copyright
This document has been placed in the Public Domain.